Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38668606

ABSTRACT

This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.


Subject(s)
Computational Biology , Elapid Venoms , Animals , Chromatography, Liquid , Elapid Venoms/chemistry , Elapid Venoms/analysis , Mass Spectrometry/methods , Elapidae , Liquid Chromatography-Mass Spectrometry
2.
Toxicon X ; 22: 100197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633504

ABSTRACT

Snakebite envenoming is a global health issue that affects millions of people worldwide, and that causes morbidity rates surpassing 450,000 individuals annually. Patients suffering from snakebite morbidities may experience permanent disabilities such as pain, blindness and amputations. The (local) tissue damage that causes these life-long morbidities is the result of cell- and tissue-damaging toxins present in the venoms. These compounds belong to a variety of toxin classes and may affect cells in various ways, for example, by affecting the cell membrane. In this study, we have developed a high-throughput in vitro assay that can be used to study membrane disruption caused by snake venoms using phospholipid vesicles from egg yolk as a substrate. Resuspended chicken egg yolk was used to form these vesicles, which were fluorescently stained to allow monitoring of the degradation of egg yolk vesicles on a plate reader. The assay proved to be suitable for studying phospholipid vesicle degradation of crude venoms and was also tested for its applicability for neutralisation studies of varespladib, which is a PLA2 inhibitor. We additionally made an effort to identify the responsible toxins using liquid chromatography, followed by post-column bioassaying and protein identification using high-throughput venomics. We successfully identified various toxins in the venoms of C. rhodostoma and N. mossambica, which are likely to be involved in the observed vesicle-degrading effect. This indicates that the assay can be used for screening the membrane degrading activity of both crude and fractionated venoms as well as for neutralisation studies.

3.
Toxicon X ; 21: 100185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38425752

ABSTRACT

Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).

4.
Commun Biol ; 7(1): 358, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519650

ABSTRACT

Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Extracellular Matrix , Public Health
5.
Toxicon ; 240: 107637, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331109

ABSTRACT

Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.


Subject(s)
Crotalid Venoms , Naja , Venomous Snakes , Animals , Crotalus , Cardiotoxicity , Elapid Venoms/toxicity , Elapidae , Crotalid Venoms/toxicity
6.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069093

ABSTRACT

Snakebite is considered a concerning issue and a neglected tropical disease. Three-finger toxins (3FTxs) in snake venoms primarily cause neurotoxic effects since they have high affinity for nicotinic acetylcholine receptors (nAChRs). Their small molecular size makes 3FTxs weakly immunogenic and therefore not appropriately targeted by current antivenoms. This study aims at presenting and applying an analytical method for investigating the therapeutic potential of the acetylcholine-binding protein (AChBP), an efficient nAChR mimic that can capture 3FTxs, for alternative treatment of elapid snakebites. In this analytical methodology, snake venom toxins were separated and characterised using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-throughput venomics. By subsequent nanofractionation analytics, binding profiling of toxins to the AChBP was achieved with a post-column plate reader-based fluorescence-enhancement ligand displacement bioassay. The integrated method was established and applied to profiling venoms of six elapid snakes (Naja mossambica, Ophiophagus hannah, Dendroaspis polylepis, Naja kaouthia, Naja haje and Bungarus multicinctus). The methodology demonstrated that the AChBP is able to effectively bind long-chain 3FTxs with relatively high affinity, but has low or no binding affinity towards short-chain 3FTxs, and as such provides an efficient analytical platform to investigate binding affinity of 3FTxs to the AChBP and mutants thereof and to rapidly identify bound toxins.


Subject(s)
Receptors, Nicotinic , Snake Bites , Toxins, Biological , Animals , Neurotoxins/toxicity , Elapid Venoms/chemistry , Acetylcholine , Three Finger Toxins , Snake Venoms , Elapidae/metabolism
7.
Nat Commun ; 14(1): 7812, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097534

ABSTRACT

Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.


Subject(s)
Snake Bites , Mice , Humans , Animals , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Drug Combinations
8.
Anal Chim Acta ; 1283: 341962, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977786

ABSTRACT

Over the last decade, a remarkable number of new psychoactive substances (NPS) have emerged onto the drug market, resulting in serious threats to both public health and society. Despite their abundance and potential toxicity, there is little information available on their metabolism, a crucial piece of information for clinical and forensic purposes. NPS metabolism can be studied using in vitro models, such as liver microsomes, cytosol, hepatocytes, etc. The tentative structural elucidation of metabolites of NPS formed using in vitro models is typically carried out using liquid chromatography combined with high-resolution tandem mass spectrometry (LC-HRMS2) with collision-induced dissociation (CID) as a fragmentation method. However, the thermally-excited ions produced with CID may not be sufficient for unambiguous identification of metabolites or their complete characterization. Electron-activated dissociation (EAD), a relatively new fragmentation approach that can be used to fragment singly-charged ions, may provide complementary structural information that can be used to further improve the confidence in metabolite identification. The aim of this study was to compare CID and EAD as fragmentation methods for the characterization and identification of synthetic cathinone positional isomers and their metabolites. The in vitro metabolism of 2-methylethcathinone (2-MEC), 3-methylethcathinone (3-MEC) and 4-methylethcathinone (4-MEC) was investigated with both CID and EAD methods using LC-HRMS2. Four, seven and six metabolites were tentatively identified for the metabolism of 2-MEC, 3-MEC and 4-MEC, respectively. Here, the metabolism of 3-MEC and 2-MEC is reported for the first time. The EAD product ion mass spectra showed different fragmentation patterns compared to CID, where unique and abundant product ions were observed in EAD but not in CID. More importantly, certain EAD exclusive product ions play a significant role in structural elucidation of some metabolites. These results highlight the important role that EAD fragmentation can play in metabolite identification workflows, by providing additional fragmentation data compared with CID and, thus, enhancing the confidence in structural elucidation of drug metabolites.


Subject(s)
Electrons , Synthetic Cathinone , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Ions/analysis
9.
Toxins (Basel) ; 15(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37755978

ABSTRACT

Modern analytical size exclusion chromatography (SEC) is a suitable technique to separate venom toxin families according to their size characteristics. In this study, a method was developed to separate intact venom toxins from Bungarus multicinctus and Daboia russelii venoms via analytical SEC using volatile, non-salt-containing eluents for post-column mass spectrometry, coagulation bioassaying and high-throughput venomics. Two venoms were used to demonstrate the method developed. While the venom of Bungaurs multicinctus is known to exert anticoagulant effects on plasma, in this study, we showed the existence of both procoagulant toxins and anticoagulant toxins. For Daboia russelii venom, the method revealed characteristic procoagulant effects, with a 90 kDa mass toxin detected and matched with the Factor X-activating procoagulant heterotrimeric glycoprotein named RVV-X. The strong procoagulant effects for this toxin show that it was most likely eluted from size exclusion chromatography non-denatured. In conclusion, the separation of snake venom by size gave the opportunity to separate some specific toxin families from each other non-denatured, test these for functional bioactivities, detect the eluting mass on-line via mass spectrometry and identify the eluted toxins using high-throughput venomics.


Subject(s)
Anticoagulants , Biological Assay , Chromatography, Gel , Mass Spectrometry , Viper Venoms
10.
Biochem Pharmacol ; 216: 115758, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604290

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the most serious and is currently only treated with difficult to access and variably efficacious commercial antivenoms. Venom-induced neurotoxicity is often caused by α-neurotoxins antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel. Discovery of therapeutics targeting α-neurotoxins is hampered by relying on binding assays that do not reveal restoration of receptor activity or more costly and/or lower throughput electrophysiology-based approaches. Here, we report the validation of a screening assay for nAChR activation using immortalised TE671 cells expressing the γ-subunit containing muscle-type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay validation using traditional nAChR agonists and antagonists, which either activate or block ion fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules. Our findings show robust evidence of assay uniformity across 96-well plates and highlight the amenability of this approach for the future discovery of new snakebite therapeutics via screening campaigns. The described assay therefore represents a useful first-step approach for identifying α-neurotoxins and their inhibitors in the context of snakebite envenoming, and it should provide wider value for studying modulators of nAChR activity from other sources.


Subject(s)
Receptors, Nicotinic , Snake Bites , Humans , Receptors, Nicotinic/metabolism , Neurotoxins/toxicity , Neurotoxins/chemistry , Snake Bites/drug therapy , Antivenins/pharmacology , Elapid Venoms/chemistry , Muscles/metabolism
11.
PLoS Negl Trop Dis ; 17(8): e0011564, 2023 08.
Article in English | MEDLINE | ID: mdl-37590328

ABSTRACT

Snakebite envenoming is a globally important public health issue that has devastating consequences on human health and well-being, with annual mortality rates between 81,000 and 138,000. Snake venoms may cause different pathological effects by altering normal physiological processes such as nervous transfer and blood coagulation. In addition, snake venoms can cause severe (local) tissue damage that may result in life-long morbidities, with current estimates pointing towards an additional 450,000 individuals that suffer from permanent disabilities such as amputations, contractions and blindness. Despite such high morbidity rates, research to date has been mainly focusing on neurotoxic and haemotoxic effects of snake venoms and considerably less on venom-induced tissue damage. The molecular mechanisms underlaying this pathology include membrane disruption and extracellular matrix degradation. This research describes methods used to study the (molecular) mechanisms underlaying venom-induced cell- and tissue damage. A selection of cellular bioassays and fluorescent microscopy were used to study cell-damaging activities of snake venoms in multi-well plates, using both crude and fractionated venoms. A panel of 10 representative medically relevant snake species was used, which cover a large part of the geographical regions most heavily affected by snakebite. The study comprises both morphological data as well as quantitative data on cell metabolism and viability, which were measured over time. Based on this data, a distinction could be made in the ways by which viper and elapid venoms exert their effects on cells. We further made an effort to characterise the bioactive compounds causing these effects, using a combination of liquid chromatography methods followed by bioassaying and protein identification using proteomics. The outcomes of this study might prove valuable for better understanding venom-induced cell- and tissue-damaging pathologies and could be used in the process of developing and improving snakebite treatments.


Subject(s)
Snake Bites , Humans , Snake Venoms/toxicity , Elapid Venoms , Amputation, Surgical , Biological Assay
12.
Anal Bioanal Chem ; 415(22): 5403-5420, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37452840

ABSTRACT

Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.


Subject(s)
Alkaloids , Tandem Mass Spectrometry , Rats , Male , Humans , Female , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Alkaloids/analysis , Liver/chemistry , Microsomes, Liver/metabolism
13.
Biology (Basel) ; 12(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37372050

ABSTRACT

Snakebite envenoming is an important public health issue with devastating consequences and annual mortality rates that range between 81,000 and 138,000. Snake venoms may cause a range of pathophysiological effects affecting the nervous system and the cardiovascular system. Moreover, snake venom may have tissue-damaging activities that result in lifelong morbidities such as amputations, muscle degeneration, and organ malfunctioning. The tissue-damaging components in snake venoms comprise multiple toxin classes with various molecular targets including cellular membranes and the extracellular matrix (ECM). In this study, we present multiple assay formats that enable investigation of snake venom-induced ECM degradation using a variety of (dye-quenched) fluorescently labeled ECM components. Using a combinatorial approach, we were able to characterise different proteolytic profiles for different medically relevant snake venoms, followed by identification of the responsible components within the snake venoms. This workflow could provide valuable insights into the key mechanisms by which proteolytic venom components exert their effects and could therefore prove useful for the development of effective snakebite treatments against this severe pathology.

14.
Toxins (Basel) ; 15(4)2023 04 18.
Article in English | MEDLINE | ID: mdl-37104232

ABSTRACT

The cytotoxicity caused by snake venoms is a serious medical problem that greatly contributes to the morbidity observed in snakebite patients. The cytotoxic components found in snake venoms belong to a variety of toxin classes and may cause cytotoxic effects by targeting a range of molecular structures, including cellular membranes, the extracellular matrix (ECM) and the cytoskeleton. Here, we present a high-throughput assay (384-well plate) that monitors ECM degradation by snake venom toxins via the application of fluorescent versions of model ECM substrates, specifically gelatin and collagen type I. Both crude venoms and fractionated toxins of a selection of medically relevant viperid and elapid species, separated via size-exclusion chromatography, were studied using the self-quenching, fluorescently labelled ECM-polymer substrates. The viperid venoms showed significantly higher proteolytic degradation when compared to elapid venoms, although the venoms with higher snake venom metalloproteinase content did not necessarily exhibit stronger substrate degradation than those with a lower one. Gelatin was generally more readily cleaved than collagen type I. In the viperid venoms, which were subjected to fractionation by SEC, two (B. jararaca and C. rhodostoma, respectively) or three (E. ocellatus) active proteases were identified. Therefore, the assay allows the study of proteolytic activity towards the ECM in vitro for crude and fractionated venoms.


Subject(s)
Snake Bites , Toxins, Biological , Humans , Collagen Type I , Gelatin , Snake Venoms/chemistry , Elapid Venoms/chemistry , Metalloproteases , Extracellular Matrix
15.
J Proteome Res ; 22(6): 1734-1746, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37010854

ABSTRACT

In this study, we present high-throughput (HT) venomics, a novel analytical strategy capable of performing a full proteomic analysis of a snake venom within 3 days. This methodology comprises a combination of RP-HPLC-nanofractionation analytics, mass spectrometry analysis, automated in-solution tryptic digestion, and high-throughput proteomics. In-house written scripts were developed to process all the obtained proteomics data by first compiling all Mascot search results for a single venom into a single Excel sheet. Then, a second script plots each of the identified toxins in so-called Protein Score Chromatograms (PSCs). For this, for each toxin, identified protein scores are plotted on the y-axis versus retention times of adjacent series of wells in which a toxin was fractionated on the x-axis. These PSCs allow correlation with parallel acquired intact toxin MS data. This same script integrates the PSC peaks from these chromatograms for semiquantitation purposes. This new HT venomics strategy was performed on venoms from diverse medically important biting species; Calloselasma rhodostoma, Echis ocellatus, Naja pallida, Bothrops asper, Bungarus multicinctus, Crotalus atrox, Daboia russelii, Naja naja, Naja nigricollis, Naja mossambica, and Ophiophagus hannah. Our data suggest that high-throughput venomics represents a valuable new analytical tool for increasing the throughput by which we can define venom variation and should greatly aid in the future development of new snakebite treatments by defining toxin composition.


Subject(s)
Snake Bites , Viperidae , Animals , Proteomics/methods , Snake Venoms/chemistry , Bungarus/metabolism , Viperidae/metabolism , Elapid Venoms/chemistry
16.
Toxins (Basel) ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36828475

ABSTRACT

Snakebite is considered a neglected tropical disease, and it is one of the most intricate ones. The variability found in snake venom is what makes it immensely complex to study. These variations are present both in the big and the small molecules found in snake venom. This study focused on examining the variability found in the venom's small molecules (i.e., mass range of 100-1000 Da) between two main families of venomous snakes-Elapidae and Viperidae-managing to create a model able to classify unknown samples by means of specific features, which can be extracted from their LC-MS data and output in a comprehensive list. The developed model also allowed further insight into the composition of snake venom by highlighting the most relevant metabolites of each group by clustering similarly composed venoms. The model was created by means of support vector machines and used 20 features, which were merged into 10 principal components. All samples from the first and second validation data subsets were correctly classified. Biological hypotheses relevant to the variation regarding the metabolites that were identified are also given.


Subject(s)
Snake Bites , Viperidae , Animals , Humans , Snake Venoms , Elapidae/metabolism , Viperidae/metabolism , Mass Spectrometry , Elapid Venoms/metabolism
17.
Toxins (Basel) ; 15(1)2023 01 13.
Article in English | MEDLINE | ID: mdl-36668892

ABSTRACT

Snake venoms are complex mixtures of toxins that differ on interspecific (between species) and intraspecific (within species) levels. Whether venom variation within a group of closely related species is explained by the presence, absence and/or relative abundances of venom toxins remains largely unknown. Taipans (Oxyuranus spp.) and brown snakes (Pseudonaja spp.) represent medically relevant species of snakes across the Australasian region and provide an excellent model clade for studying interspecific and intraspecific venom variation. Using liquid chromatography with ultraviolet and mass spectrometry detection, we analyzed a total of 31 venoms covering all species of this monophyletic clade, including widespread localities. Our results reveal major interspecific and intraspecific venom variation in Oxyuranus and Pseudonaja species, partially corresponding with their geographical regions and phylogenetic relationships. This extensive venom variability is generated by a combination of the absence/presence and differential abundance of venom toxins. Our study highlights that venom systems can be highly dynamical on the interspecific and intraspecific levels and underscores that the rapid toxin evolvability potentially causes major impacts on neglected tropical snakebites.


Subject(s)
Snake Bites , Toxins, Biological , Animals , Elapid Venoms/genetics , Phylogeny , Elapidae/genetics , Snake Venoms , Snakes , Antivenins
18.
Front Pharmacol ; 14: 1328950, 2023.
Article in English | MEDLINE | ID: mdl-38273820

ABSTRACT

Snakebite envenoming results in ∼100,000 deaths per year, with close to four times as many victims left with life-long sequelae. Current antivenom therapies have several limitations including high cost, variable cross-snake species efficacy and a requirement for intravenous administration in a clinical setting. Next-generation snakebite therapies are being widely investigated with the aim to improve cost, efficacy, and safety. In recent years several small molecule drugs have shown considerable promise for snakebite indication, with oral bioavailability particularly promising for community delivery rapidly after a snakebite. However, only two such drugs have entered clinical development for snakebite. To offset the risk of attrition during clinical trials and to better explore the chemical space for small molecule venom toxin inhibitors, here we describe the first high throughput drug screen against snake venom metalloproteinases (SVMPs)-a pathogenic toxin family responsible for causing haemorrhage and coagulopathy. Following validation of a 384-well fluorescent enzymatic assay, we screened a repurposed drug library of 3,547 compounds against five geographically distinct and toxin variable snake venoms. Our drug screen resulted in the identification of 14 compounds with pan-species inhibitory activity. Following secondary potency testing, four SVMP inhibitors were identified with nanomolar EC50s comparable to the previously identified matrix metalloproteinase inhibitor marimastat and superior to the metal chelator dimercaprol, doubling the current global portfolio of SVMP inhibitors. Following analysis of their chemical structure and ADME properties, two hit-to-lead compounds were identified. These clear starting points for the initiation of medicinal chemistry campaigns provide the basis for the first ever designer snakebite specific small molecules.

19.
Front Pharmacol ; 14: 1331224, 2023.
Article in English | MEDLINE | ID: mdl-38273832

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.

20.
Toxins (Basel) ; 14(11)2022 10 27.
Article in English | MEDLINE | ID: mdl-36355986

ABSTRACT

Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.


Subject(s)
Dendroaspis , Animals , Anticoagulants/toxicity , Proteomics , Elapid Venoms/toxicity , Elapidae , Snake Venoms , Phospholipases A2/toxicity , Biological Assay , Metalloproteases , Antivenins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...